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On the interaction of surface and internal waves 
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The steady-state interaction between surface waves and long internal waves is 
investigated theoretically using the radiation stress concepts derived by Longuet- 
Higgins & Stewart (1964) (or Phillips 1966). It is shown that, over internal wave 
crests, those surface waves for which c f focos~o > ci experience a change in 
direction of propagation towards the line of propagation of the internal waves and 
their amplitudes are increased. Here cgo is the surface-wave group speed at U = 0, 
q50 is the angle between the propagation direction of the surface waves at  U = 0 
and the propagation direction of the internal waves, and ci is the phase speed of 
the internal waves. If cgo cos q50 < ci the direction of the surface waves is turned 
away and their amplitudes are decreased. Over troughs the opposite effects occur. 

At positions where the local velocity of surface-wave energy transmission 
measured relative to the internal wave phase velocity is zero, i.e. cff + U - ci = 0, 
there is a singularity in the energy of the surface waves with resulting infinite 
amplitudes. It is shown that at  these critical positions two wavenumbers which 
were real and distinct on one side coalesce and become complex on the other. The 
critical positions are thus shown to be barriers to the propagation of those wave- 
numbers. It is also shown that there is a critical position representing the 
coalescence of three wavenumbers. Surface-wave crest configurations are shown 
for three numerical examples. The frequency and direction of propagation of 
surface waves that exhibit critical positions somewhere in an internal wave field 
are shown as a function of the maximum horizontal surface current. This is 
compared with measurements of wind waves that have been reported elsewhere. 

1. Introduction 
The association of internal waves and the regular banded patterns of either 

surface slicks or surface roughnesses, often observed in coastal waters, is well 
documented (Ewing 1950; LaFond 1962; Perry & Schimke 1965). The bands are 
caused by periodic changes in the character of the surface-wave field, changes 
which propagate with the internal waves and locally alter the average reflexion 
by the sea surface. Slicks are characterized by decreased mean-square slope of 
the sea surface and hence a decrease in the average angle of reflexion (measured 

t Present address : Marine Sciences Branch, Department of the Environment, c/o Defence 
Research Establishment Pacific, F.M.O., Victoria, B.C. 
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from the horizontal) of incident light. Seen from the air, slicks may appear either 
dark or light relative to the surroundings, depending upon the angle of viewing. 
An aerial photograph (figure 1, plate 1)  of the Strait of Georgia, between 
Vancouver Island and the British Columbia mainland coast, shows the distinctive 
banded patterns associated with groups of internal waves which occur in this 
region. The slicks (narrow bands) here appear light toward the top and darker 
toward the bottom of the photograph. 

The generally accepted explanation of the changes of surface reflexion in the 
presence of internal waves has been that of Ewing (1950), who states that slicks 
are caused “by the ripple-damping action of a surface film of organic matter 
which occurs naturally on biologically productive waters”. The presence of 
a surface film lowers the surface tension from that of pure water by an amount 
which depends upon the film area; over-extended films break up into patches and 
have little effect on surface tension, while a film under sufficient compression will 
become practically inextensible. Between these extremes the film is essentially 
elastic; that is, the surface tension varies linearly with surface area. Lamb (1897) 
finds a purely viscous damping time (time for the wave amplitude to decrease to 
e-1 of its original value) of r 1: 0.7h2 s for a wave of length h cm on a clean water 
surface, while damping times in the presence of an inextensible surface film 
decrease to 7’ N 0.32h1.75 s for capillary waves and r” N 0-38h1*25 s for gravity 
waves (Phillips 1966). Thus the presence of a surface film greatly increases the 
damping of surface waves. 

If an organic film covers the water surface of an area traversed by internal 
waves the periodic convergence and divergence of the horizontal surface current 
due to the internal waves will cause a periodic contraction and expansion of the 
surface film, with maximum extension of the film over the internal wave crests 
and maximum compression over the troughs. Thus, an internal wave trough 
would be marked by a slick, characterized by reduced ripple action due to the 
compacted film, and a crest would be marked by an increased number of ripples, 
presumably quickly regenerated by the wind. 

The surface of the Strait of Georgia is ‘dirty’, as is indicated by the logs, wood 
chips, foam, etc., frequently observed in areas of convergence, so large areas may 
well be covered by the thin organic film necessary for the above mechanism of 
slick formation. However, in this region the rough bands, seen from a low altitude 
in figure 2 (plate 2), are characterized by sharply peaked short gravity waves 
which have very long crests aligned approximately parallel to the axis of the 
rough band; that is, parallel to the crest of the internal wave. The surface-film 
mechanism affects only the amplitudes, not the directions, of the various com- 
ponents of the surface-wave field, and its failure to account for the peculiar 
nature of the observed wave field in the rough bands led us to investigate an 
alternative mechanism - the interaction between surface waves and a periodic 
‘mean current ’ induced by the internal waves. In  3 2 the effect of this current on 
part of the surface-wave field is examined, using simple wave kinematics and the 
energy equation, while in fj 3 we examine the nature of a singularity of the system 
which gives rise to propagation barriers and adjacent prohibited areas for various 
components of the surface-wave field. 
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2. Radiation stress effects on the surface-wave field 
We consider an internal-wave field propagating in the y direction only and at  

one speed only. Its wavelength is taken to be long enough for it to exhibit no 
appreciable variation in horizontal velocity over the depth containing substanti- 
ally all of the motion of the surface-wave field. Its accelerations are also taken 
small enough for vertical displacements of the free surface due to the internal 
wave to be negligible (Thorpe 1968). We also consider a simple monochromatic 
surface wave of amplitude a,  wavenumber k and frequency w. The basic co- 
ordinate system shown in figure 3 (a )  is taken with y axis in the direction ofci, the 

x .Y 

FIGURE 3. Co-ordinate systems used in the discussion of interaction between the mean 
current and background surface-wave field. (a) System fixed relative to source of waves, 
(a) system moving at uniform velocity cj. 

direction of internal-wave propagation, so that the surface-wave vector k makes 
an angle B with the x axis, and the phase velocity c is parallel to k in the absence 
of a mean current. The internal wave-induced 'mean' current U ( y - c i t )  will 
affect both the amplitude and wavenumber of the surface wave. A convenient 
co-ordinate system will be one moving in the positive y direction at  speed ci 
(figure 3 ( b ) )  in which the motion can be considered steady (except of course for 
the periodic nature of the surface-wave motion). Primes will denote variables in 
this system, where c' = c - ci and the mean current U (  y') is nowtime-independent. 
'The problem is now similar to that solved by Longuet-Higgins & Stewart (1964) 
and in fact the analysis that follows is based on their methods (see also Phillips 
1966, 3 3.7). When observed in this steady-state system the surface-wave 
frequency w' must be constant (Phillips 1966, §3.5), and since lengths are 
invariant with respect to translation k' = k, i.e. 

w' = k'.(c'+u) = k.(c-ci+u) = constant. 

'To this are added the dispersion relation for gravity waves on deep water, w2 = gk, 
and the condition that k, = k cos 0, the x componenk of the wavenumber vector, 
be constant. Since the mean current varies only with y' there is no mechanism for 
*changing k,. If, then, c,, k, and 0, are the wave speed and the magnitude and 
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orientation of the wavenumber vector when U(y') = 0, these conditions form 
a set of three algebraic equations: 

k(c + ( U  - ci) sin 8) = Ic,(c, - ci sin O,), 
c2k = C: k,, 

~ccose = 1c,cos8,, 

from which c, k and 8 can be determined as functions of y' once U(y ' )  is specified. 
Before carrying out this solution, however, we examine the balance of surface 
wave energy; the requirement that the energy be positive and finite will result in 
restriction of the range of variables for which the purely kinematic relations 
(1)-(3) are valid. 

The general equation obeyed by the wave energy as derived by Longuet- 
Higgins & Stewart (1 964) is 

where V is the mean velocity, c, the group velocity, S = (SJj) the radiation stress 
tensor of the surface wave and I? = (rij) = (aE/axj) the rate of strain tensor of 
the (horizontal) meanvelocity. Observed in the x, y' system, the local time rate of 
change is zero. For surface waves in deep water c, = Qc so that ci = Qc - ci, while 
the radiation stress tensor is given by 

) = QE (cOs2' sin 8 cos 8 
sin 0 cos 8 sin2 8 

if the wave travels a t  an angle 8 to the x axis. In  the case of flow associated with 
internal waves the continuity balance of the mean flow is maintained by avertical 
velocity. Thus the rate of strain tensor is simply 

since the y' axis was chosen in the direction of the mean 
independent of x. The energy equation thus reduces to 

a au 
aY' a Y  
- [E( U -ci + +sin S)] + QEsin207 

current, assumed to be 

= 0, 

which can be integrated exactly if use is made of (1) and (3),  differentiated with 
respect to y'. The result is 

E cg0 sin 8, - ci w _ -  - 
E, c,sine-ci+ uW,' 

where E, is a reference energy occurring when = 0, that is, over a node of the 
interface displacement. The wave energy E is obviously positive and finite only 
if c, sin 8 - ci + U has the same sign everywhere, the simple physical requirement 
that the magnitude of the mean current I U(y') 1 be less than leg sin 8 - ci[, the 
magnitude of the velocity of wave-energy propagation in the y' direction. 
Surface waves having velocity c, such that this condition is more than marginally 
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satisfied will be termed the background wave field. Those waves for which 
co sin 8 - ci + U = 0 for some value within the range of U are unable to propagate 
through this critical position; the distribution of the critical positions is outlined 
in $3.  We now consider in greater detail the effect of U on the background 
wave field. 

The wavenumber changes can be derived from the kinematic relations (1)-( 3). 
Eliminating c and k, we obtain an equation for cos 8: 

where a, = c,/(co - ci sin 8,) and laOl > 1 for waves of the background field travel- 
ling in the same direction as the internal wave (the ‘same’ direction being defined 
as c within -t. 90” of ci, so that sin 8, > 0). This equation may be treated as a 
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FIUURE 4. Graphical solution of the transcendental equation 
f(z) = (+o)-uo(z/zo)* = R(y’)(l-z2)) = g(z). 

transcendental equation for cos 8, the solution varying with the value of U(y‘) .  
For ease in plotting, the equation is rewritten in the form 

f(x) = x/xo - ao(x/xo)* = R(y’) (1 - X2)* = g(x), (4) 
where = COSe, x, = cos8, 

and a,(U(y’) - Ci) R(y’) = sgn (sine,) 
CO 

Figure 4 illustrates the two functions f and g in the interval [0,1] with R < 0. If 
R > 0 the set of three curves representing g(x) possesses the same elliptical form 
but appears above the x axis. 

The general behaviour of the solution of (4) is as follows. 
(i) If 1 < a, < 2/(1 +x;), i.e. if coo > (ci/sin O,), cos 8 > cos 8, (8 < 8,) for U > o 

(ii) If a, < 0 or a, > 2/(1 +xi), i.e. if cg0 < (c,/sin 8,)’ cos 8 < cos 8,(8 > 8,) for 

Condition (i) describes wave groups that ‘overtake ’ the internal wave along 
the direction of ci; for condition (ii) the wave groups are ‘overtaken’. From (3), 

and cos 8 < cos 8, (8 > 8,) for U < 0, with a slight asymmetry about x = x,. 

u > o and cos e > cos e,(e < e,) for u < 0. 
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(i) results in k < k, for U > 0 and k > k, for U < 0. Thus background field waves 
incident in the first quadrant experience an increase in wavenumber magnitude 
and a turning of the wavenumber vector towards the y' axis over the crest of the 
internal wave ( U  < O ) ,  and a decrease in wavenumber magnitude and a turning 
of the wavenumber vector away from the y' axis over the internal wave trough 
( U  > 0) .  Examination of the solution to (4) for - 1 < cos8,< 0 shows that 
exactly the same statement can be made for 8,in the second quadrant, so that the 
directional spectrum of the background field is narrowed towards the direction 
of c, over internal wave crests and broadened over troughs. For condition (ii) the 
opposite behaviour occurs, with the result that the directional spectrum is 
broadened over crests and narrowed over troughs. If 8, is in the third or fourth 
quadrants, 0 < a, < 1 and variations in the wave spectrum are similar t o  those 
for condition (ii). These wave groups can also be considered as of the 'overtaken' 
variety. 

The associated amplitude changes can be obtained directly from the expression 
for the energy, since E cc a2 for waves on a horizontal mean surface. It can be 
shown that for the background field the amplitude varies in the same manner as 
(w/w0)8, so that for waves satisfying condition (i) the amplitudes increase over the 
crests of the internal wave and decrease over the troughs. For condition (ii) the 
amplitudes decrease over the crests and increase over troughs. 

Thus, provided that most of the background wave field travels in Che same 
direction ( f 90") as the internal wave, this mechanism for waves satisfying 
condition (i) results in rough bands (increased amplitudes, decreased wave- 
lengths, wave crests tending to be parallel to the internal crests) over the crests 
of an internal wave with maximum effect over the peak, while troughs are 
marked by relatively smooth bands (decreased amplitudes, increased wave- 
lengths, wave crests tending to turn perpendicular to the internal troughs) and 
vice versa for condition (ii). The change in mean-square slope arises through 
changes in both the amplitude and wavelength of the surface waves, as opposed 
to the surface-film mechanism, which can produce only amplitude changes. As 
well, the wave-current interaction mechanism produces directional changes in 
the background wave field and is conservative in nature, unlike the mechanism 
of wave damping by a surface film which must rely on the wind to rebuild the 
wave field between slicks. Of course if most of the background wave field travels 
in the opposite direction to the internal wave, slicks will be produced over the 
crests and rough bands over the troughs of the internal wave. I n  this connexion 
it is interesting to  note that most situations in which observations have been 
made of the relative position of slicks and internal displacements probably 
satisfy the condition that the surface-wave field has the same direction as the 
internal waves. Ewing, for example, reports internal waves in the area of San 
Diego that travel in a general shoreward direction (see also Lee 1961); near an 
open coast the surface-wave field may be expected 60 be within f 90" of the 
on-shore direction. The internal waves in the Strait of Georgia travel roughly 
south to north, the prevailing wind in this area being from the south-east, so that 
the wind-generated surface waves will generally be travelling in the same direc- 
tion ( ? 90") as the internal waves. Measurements by LaFond (1962) indicate that 
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in his situation slicks were usually observed over the descending part of the 
internal wave somewhere between the wave crest and trough. In  contrast, the 
background field analysis predicts slicks or rough patches directly over the crest 
or trough. (These are in fact symmetrically placed over the peaks if the current 
is symmetrical since the modification to the surface waves depends only on U.)? 
Thus the background wave field alone is not sufficient to explain some features 
of the observed banded patterns. 

Another striking feature not explained by the background field is the sharply- 
peaked, long-crested waves which are observed travelling with crests roughly 
parallel to the axis of the rough bands. The highly nonlinear character of the 
surface wave field in the rough bands is consistent with the view that the domi- 
nant interaction is a preferential growth of surface waves for which the energy 
propagation velocity somewhere equals the phase speed of the internal wave. 
These are the waves khat give rise to critical positions. 

3. Singularities in E 
In  figure 4 there is the possibility that the crossings of the f and g curves can 

merge (as for at near 4) and so provide real roots for some values of U and not for 
others. It is the purpose of this section to identify the coalesced roots as giving 
rise to singularities in the energy density and to provide illustrations of the 
surface-wave field for some cases of coalescence. Let us examine the wavenumber 
equation (4) written in rectangular co-ordinates: 

k,( u - C i )  + g q k ;  + k$ = - k,& + gqk; ,  + k$. (5) 

This can be rewritten as P(k,, Icy,, k,, U ,  ci)  = 0. It should be noted that F 
depends only on kz so any results obtained for + k, are equally valid for - k,. 
The solution for the energy ratio can be written as 

From (5) it is seen that k, becomes infinite only if k,, does, and in this limit 
k,/k,,-+ci/(ci - U ) .  Therefore singularities in E occur only for those wave- 
numbers such that F = 0 and aF/ak, = 0 simultaneously, i.e. at  repeated roots 
of P. Let us non-dimensionalize the variables in (5) by dividing through by 
(g lkz l ) t .  With k,/lk,l = 7, P = (c i -  ?7)/(g/lkzl)+, (P > 0 everywhere) and 

Q = (glk,l)*/(right-hand side of (5)) = (glkz\)+/w& 

(r2 + 1)i = Pq + I/& 
or F(7, P, Q )  = 0. 

The form of F thus guarantees that (5) has either three real roots or one real 
root and two complex conjugates. Each of these three roots describes waves 
which have (in general) quite distinct wavelengths and directions of propagation 
at U = 0, including directions opposite to ci. The only limitation is that they all 
have the same value of P and the same value of Q. A repeated root can thus be 

t This symmetry is also a feature of the waves which experience critical positions. 

(7) 
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thought of as a coalescence of more than one wave into a single wavenumber at  
the position of the root. If the singularity is due to a double root there are wave 
trains which have real but different wavenumbers on one side of the critical 
position and which coalesce and have complex wavenumbers on the other and 
thus are exponentially eliminated. If the singularity is due to a triple root 
(possible if P = (108)-*, Q = (27/16)3 somewhere) one real wave train and two 
complex ones exist on each side of the critical position. At the triple root position 
7 = 4 2 .  In figure 4 two intersections off and g have been explicitly shown and 
only one of these has been examined in any detail. Apart from a simple scale 
change in the ordinate for bothf and g ,  an identical set of curves can be obtained 
in which xo pertains to the other crossing, thus making it a legitimate root. It is 
only necessary that both sets of curves have the same value of aixo (which in fact 
equals Q). A similar situation exists for the third root (which may be on the same 
side of the x axis as the other two, e.g. aixo slightly larger than 1).  

- 
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( ( 1 )  UJ) 
FIGURE 5. Plan view of the shapes of surface-wave crests. The broken lines down the centre 
of the illustration represent U(y'), which is positive to the right. For simplicity, the internal 
wave is sinusoidal and 1-5 periods long only. It is propagating towards the top of the page 
at a phase velocity of 0.626 m/s and has a wavelength of 100 m. Thus U > 0, a positive 
current, means fluid flowing towards the top of the page. The positions AA' indicate double- 
root critical positions and the small arrows indicate the direction of surface-wave energy 
propagation. The surface-wave parameters are k ,  = - 1.0 m-1 and (a)  k ,  = 1.412 m-l, 
every tenth surface wave shown; ( b )  kYO = 12.63 m-l, every hundredth wave shown. 
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It should be mentioned that this analysis breaks down at  the singularities and 
thus no answers can be given to the interesting and important questions regarding 
reflexion versus absorption of energy, or of continuation of the wave field across 
critical positions. 

Figures 5 ( a )  and (b )  show the plan view shape of surface wave crests for 
a particular numerical case. This case was chosen to illustrate the coalescence of 
two waves at critical positions (represented by the positions AA') and the elimina- 
tion of the surface-wave field from regions over the internal wave between these 
positions. The small arrows indicate the direction of the surface-wave energy 
propagation. The broken lines in the centre of the figures represent U(y'), which 
is sinusoidal for 1-5 periods and zero elsewhere (at the top and bottom of the 
figure). The internal wave values for ci and wavelength were chosen as 0.626:mls 
and lOOm respectively and the surface-wave nodal values are as follows: 
k, = - 1.0m-l, k,, = 1.412m-lin figure 5 (a )  (with every tenth wave shown) and 
k,, = 12.63 m-l in figure 5 ( b )  (with every hundredth wave shown). The peak 
value of I Ul/c,  is 0.5. The critical positions are the same in both figures and 
occur at  UIUpeak = - 0.5. 

In these examples the initial conditions would determine whether the surface- 
wave field contained any energy in regions 2 and 3. If either of these examples 
is considered to be one Fourier component of a real wind-wave system, the initial 
conditions would still be important; however, there would be local wave genera- 
tion in regions 2 and 3 which would be Doppler shifted because of U .  An 
examination of the surface-wave field under those conditions is beyond the scope 
of this analysis. 

Figure 6 presents the case of a triple root for the same internal wave conditions 
as in figure 5, except that ci = 1.5 m/s, and for k, = - 1.0 m-l and k,, = 0.301 m-1. 

Again every tenth wave is shown. The triple-root critical positions? are a t  AA', 
where U/Upeak = 0,707. There are no forbiddeii regions in this case (in contrast 
with figure 5) because even though the first and second derivatives of k, are 
infinite at AA', k, itself is continuous and possesses one real value everywhere. 
We have emphasized the existence of a triple root for two reasons. First, we 
expect that a solution to the problem using asymptotic expansions which are 
uniformly valid across all critical positions will be governed by the nature of the 
expansion near the triple root. We are at present investigating this problem. 
Second, but not independently, the triple root represents the highest order 
singularity in wavenumber space and should thus produce the most profound 
effect on the surface waves. Whether this is readily apparent will depend on the 
relative amount of surface-wave energy in wavenumbers that give rise to a triple 
root compared with that of those that do not, and of the effect of (o/wo)&. 

Finally, figure 7 presents the nodal parameters that give rise to critical 
positions somewhere in an internal wave field as a function of the internal-wave 
magnitude. The parameter that determines the various curves in figure 7 (a)  is 
q = Urninlei and in figure 7 (b )  it is p = Umax/ci. The numbers that are displayed are 
the q values for the representative curves. The curves labelled I' are the envelopes 

t We have shown the wave crests continuous across the critical positions here, thus 
anticipating that a uniformly valid and everywhere k i t e  asymptotic expansion does exist. 
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of the end points of individual q curves. The co-ordinates in figure 7 are most 
conveniently represented in polar form: the radius vector has a magnitude of 
woci/g (where o,, is the nodal radian frequency of the surface waves) and a direc- 
tion 8, (the nodal propagation direction of the surface). The internal wave is 
propagating along B0 = 90". The area contained between curves which have the 

- A' 

- '1' 

FIGURE 6. As in figure 5 ,  except that ci = 1.5 m/s. karo = 0.301 m-l and every tenth wave 
is shown. The locations AA' indicate triple-root critical positions. 

same q values, and which is bounded by r represents the nodal values of those 
surface waves which are eliminated somewhere in that particular internal wave 
field. Thus, if an internal-wave field gradually builds up from zero height in the 
presence of a surface wave fieldi and if the peak of the surface-wave energy falls 
in the 'eliminated' area, then a substantial change in the visual character of the 
surface-wave field should result merely from the existence of the singularities. 
The appearance would be that of a series of slicks.$ For comparison a directional 
surface-wave spectral measurement of Gilchrist (1966) is also shown. The shaded 

t For example, dead-water waves behind a vessel slowly changing speed. 
1 Even if the singularities represent regions of increased dissipation, permanent slicks 

could be formed either by establishing a balance with some regenerative process such as 
the local wind or by dissipating all the energy in waves encountering singularities and thus 
leaving apparent the band structure of the background wave field. 
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area represents values of the energy spectrum greater than or equal to 10% of the 
peak value for a fetch limited wind-wave spectrum.t The magnitude of the wind 
was 5.8 m/s at a height of 2 m and we have arbitrarily assigned the energy spec- 
trum to be approximately symmetrical about 0, = 90' (a 45" shift, see previous 

q=-1\ 

-0.2 -0.1 0 0.1 0.2 

0.5 
0.2 \ 0.5 

q= 1 
(4 (4 

FIGURE 7. Frequency and propagation direction of those surface waves which have an 
important critical position somewhere in an internal wave field. The magnitude of the 
surface current due to the internal wave is given by q = Up,/ci. In  polar co-ordinates the 
radius vector has a length of w,ci/g and an angle equal to the propagation angle of the 
surface waves a t  the nodal positions ( U  = 0) ,  w, being the radian frequency of the surface 
waves also a t  the nodal positions. The internal wave is propagating along the direction 
0, = go", I' represents the loci of the end-points of the curves for the individual q's and the 
shaded areas represent an experimental surface wind-wave spectrum measured by 
Gilchrist (1966) and for which ci was taken as 0.60 m/s. (a) q < 0, (b)  q > 0. 

footnote). Although internal waves were not a feature of his experimental situa- 
tion we have arbitrarily taken ci = 0-60m/s. Since the shaded area lies entirely 
within I? and the bounding curves for q = - 1 in figure 7 (a) ,  strong enough (large 
negative a)  internal waves at this ci would produce critical positions over the 

t The values shown were taken from the published curves (Gilchrist 1966, figure S), 
with some extrapolations where needed. His spectrum is asymmetric with respect to the 
wind direction because of local fetch limitations. 
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majority of the surface-wave spectrum. A larger ci would require less strong 
internal waves for the same effect, and for large enough ci the spectrum will begin 
to fall outside I?. It must be emphasized that this measured spectrum was taken 
when wave generation was an important feature of the wind-wave system and so 
it can only serve as a qualitative comparison. 

There are critical positions which are not included in figure 7. These are of two 
types: those which possess complex wavenumbers at U = 0 and which become 
real only for I UI greater than the critical value, and those for which the surface- 
wave energy can propagate through the internal-wave field if the critical positions 
behave as perfect reflectors. The first situation is omitted because we are 
restricting ourselves to real nodal values only. The second situation is omitted 
because the surface-wave field can exist everywhere even though critical posi- 
tions are present and there are thus no areas of elimination. This case occurs if 
1 < Q < (27/16)6. There are then two double-root critical positions instead of 
just one in each region 0 < U 6 U,,, and by reflecting off both barriers (in 
reverse order and changing wavenumber ‘branches ’ each time) it is possible for 
the energy to travel through the entire field. In  fact the triple root can be con- 
sidered a coalescence of such a double-root pair. 

A complete description of the phenomenon (e.g. as shown in figure 2) must 
await a non-singular theory. It can be seen, however, that the main features of 
this particular photograph are (i) extra large wave amplitudes in narrow spatial 
bands and (ii) a considerable variation in wavelength of the surface waves at 
different positions in the band (and propagation at a considerably different angle 
from a major part of the background wave field). Our suggestion is that it is 
possible that the wavelength separation is due to the variation of particle velocity 
of the internal wave and that each is at  its critical position. The excess amplitude 
would then follow immediately. It is also possible, of course, that other simul- 
taneous effects exist such as non-singular interactions as described in $ 2  acting 
on a suitably non-flat surface-wave spectrum, or local generation by wind which 
is modified by the presence of the internal-wave particle velocity. We do suggest, 
however, in this case a t  least (and in many others of our observations) that a 
surface film is not a primary disturbing agency. 

A .  E. Gargett and B. A .  Hwghes 
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FICURE 1. Aerial photograph showing banded surface markinga produced by internal 
waves : Strait of Georgia, British Columbia. (Taken by the British Columbia Government 
in 1950 and originally published by Shand (1953).) 
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FIGURE 2. The banded markings 88 seen from a low altitude, note the sharply peaked 
long-crested waves parallel to the axis of the rough band. The length of the surface waves 
in the rough band near the bottom left corner is of order 30 cm. 
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